Mathematical Skills: Functions

What is a Function?

- A mathematical function is a process that converts one set of numbers into another.
- For example: Doubling

Exponentials

- 10¹=10
- 10²=10 X 10 = 100
- 10³=10 X 10 X 10 = 1,000
- 10⁴=10 × 10 × 10 × 10 = 10,000
- 10⁵=10 × 10 × 10 × 10 × 10 = 100,000

Exponentials

- 10⁻¹=0.1
- 10^{-2} =10 ÷ 10 = 0.01
- 10⁻³=10 \div 10 \div 10 = 0.001
- 10^{-4} =10 ÷ 10 ÷ 10 ÷ 10 = 0.0001
- 10^{-5} =10 ÷ 10 ÷ 10 ÷ 10 ÷ 10 = 0.00001

The number \mathbf{e} & natural logarithms

- e = 2.71828...
- Natural Log = Log_e
- Usually written as *In*

Changing Base $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$

Exponential Functions

Example: Exponential Growth

- A particular bacteria doubles every day.
- If the initial number of bacteria (N_) is 100.
 - After ONE day there are 200 bacteria (N=200)
 - After TWO days there are 400 bacteria (N=400)
 After THREE days there are 800 bacteria (N=800)
 - And so on ...
- How many bacteria are there after 8 days?
- How many bacteria are there after 1000 days?
- Need to create mathematical function

Exponential Functions

Example: Exponential Growth

- A particular bacteria doubles every day.
- * If the initial number of bacteria (N_o) is 100.
- After ONE day N = No X 2
- After TWO days $N = N_0 \times 2 \times 2$
- After THREE days N = N_o X 2 X 2 X 2
- After FOUR days N = N_o X 2 X 2 X 2 X 2 X 2

Exponential Functions Example: Exponential Growth • A particular bacteria doubles every day. • If the initial number of bacteria (N₀) is 100. • After ONE day N = N₀ X 2¹ • After TWO days N = N₀ X 2² • After THREE days N = N₀ X 2³ • After FOUR days N = N₀ X 2⁴

• For n number of days $N = N_a X 2^n$

Exponential Functions

Example: Exponential Growth

- A particular bacteria doubles every day.
- If the initial number of bacteria (N_o) is 100.
- For n number of days

N = N_o X 2ⁿ

After 360 days x = 360 Number of bacteria, N = N_o X 2^{x} N = 100 X 2^{360} , N = 100 X 2.3 X 10^{108} N = 2.3 X 10^{110}

N = 2.3 X 10 ¹¹⁰

N = 2.3 X 10¹¹⁰

Exponential Functions

Example: Exponential Decay

- · Decay of a radionuclide.
- If the initial number of atoms of the nuclide is $N_{\mbox{\scriptsize o}}$
 - After ONE half-life N=N₀ / 2
 After TWO half-lives N=N₀ / 4
 - After TWO half-lives N=N₀ / 4
 After THREE half-lives N=N₀ / 8
 - And so on...
- How many are there after 8 half-lives?
- How many are there after 1000 half-lives?
- -> Mathematical function

Exponential Functions

Example: Exponential Decay

- Decay of a radionuclide.
- * If the initial number of atoms of the nuclide is $N_{\!\scriptscriptstyle o}$

 $N = N_0 / 2$

- After ONE half-life
- After TWO half-lives N = No /4
- After THREE half-lives N = No /8
- After FOUR half-lives $N = N_0 / 16$

Exponential Functions	
Example: Exponential Decay	
 Decay of a radionuclide. If the initial number of atoms of the nuclide is N_o 	
 After ONE half-life After TWO half-lives After THREE half-lives After FOUR half-lives 	N = N ₀ /2 N = N ₀ /4 N = N ₀ /8 N = N ₀ /16
• For n number of days	N = N _o X 2 ⁻ⁿ

Exponential Functions

Definition of an Exponential Relationship

"A quantity y is said to vary exponentially with x if equal changes in x produce equal fractional changes in y"

I.e. <u>fractional</u> change in y is <u>proportional</u> to change in x

Exponential Functions

Example: Radioactive decay

The half-life of a particular radionuclide is 8 days. Calculate the decay constant?

Trigonometric Functions

Sine y = sin (x) or f(x) = sin (x)
Cosine y = cos (x) or f(x) = cos (x)
Tangent y = tan (x) or f(x) = tan (x)

