Mathematical Skills:

Functions

What is a Function?

- A mathematical function is a process that converts one set of numbers into another.
- For example: Doubling

Doubling Function	
Input	Output
1	2
2	4
3	6
4	8

What is a Function?

The Function Machine

- A mathematical function is a process that converts one set of numbers into another.
- For example: Doubling

Doubling Function	
Input (x)	Output (y)
1	2
2	4
3	6
4	8

- Important: For each input, there is only one possible output!

Examples

Examples of Functions

- Circumference of a circle:
- Circumference $=2 \times \pi \times$ radius
$-f(r)=2 \pi r$
- Area of a circle:
- Area $=\pi X$ radius 2
$-f(r)=\pi r^{2}$
- Volume of a sphere
- Volume $=4 / 3 \pi \times$ radius 3
$-f(r)=4 / 3 \pi r^{3}$

Graphs of functions

- Functions generate pairs of numbers
- These can be used as co-ordinates to draw graphs
- Graphical display of function

Function Notation

- Variables
- Dependent Variable (y)
- Independent Variable (x)
- Constants

$$
\begin{aligned}
& y=x+2 \\
& f(x)=x+2 \\
& y=x+z \\
& f(x, z)=x+z
\end{aligned}
$$

Graphs of functions

- Functions generate pairs of numbers
- These can be used as co-ordinates to draw graphs
- Graphical display of function

Rates of Change

Rates of Change

How do we define the gradient of a curve?

Output data set (y)
Change in $x \& y$ between
two points gives an approximate value

Input data set (x)

Rates of Change

How do we define the gradient of a curve?

Output data set (y)
As change in x and y approach zero, line becomes tangent

Very small change in x and y known as $d x$ and $d y$ (x, y) is the gradient of that point curve at point the tangent at ——

Rates of Change

Gradient of curve at point (x, y) is the gradient of the tangent at that point

Exponentials \& Logarithms

Exponentials

- $10^{1}=10$
- $10^{2}=10 \times 10=100$
- $10^{3}=10 \times 10 \times 10=1,000$
- $10^{4}=10 \times 10 \times 10 \times 10=10,000$
- $10^{5}=10 \times 10 \times 10 \times 10 \times 10=100,000$

The number e \& natural logarithms

- $e=2.71828$...
- Natural $\log =\log _{e}$
- Usually written as In

Exponentials

- $10^{-1}=0.1$
- $10^{-2}=10 \div 10=0.01$
- $10^{-3}=10 \div 10 \div 10=0.001$
- $10^{-4}=10 \div 10 \div 10 \div 10=0.0001$
- $10^{-5}=10 \div 10 \div 10 \div 10 \div 10=0.00001$

- Reverse of an exponential

$$
\log _{a}\left(a^{x}\right)=x
$$

Logarithms

Examples

$$
\log _{10}(100)=
$$

$\log _{2}(8)=$
$\log _{3}(9)=$

The number e \& natural logarithms
Euler's number
e is a unique number
The value of the slope of $f_{(x)}=e^{x}$ for any value of x is equal to the value of $f_{(x)}$.

Changing Base

$$
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}
$$

Exponential Functions

General Form

a is a constant and called the base It can be any positive real number

Changing Bases

Example:

Convert $\log _{10}(x)$ to base e

$$
\log _{10}(x)=\frac{\log _{e}(x)}{\log _{e}(10)}=\frac{\ln (x)}{2.3025}
$$

Exponential Functions

Exponential Relationships

- Arise when growth or decay of a substance is proportional to original amount of substance
- Examples?

Exponential Functions

Example: Exponential Growth

- A particular bacteria doubles every day.
- If the initial number of bacteria $\left(N_{0}\right)$ is 100.
- After ONE day there are 200 bacteria $(N=200)$
- After TWO days there are 400 bacteria $(N=400)$
- After THREE days there are 800 bacteria $(N=800)$
- And so on...
- How many bacteria are there after 8 days?
- How many bacteria are there after 1000 days?
- Need to create mathematical function

Exponential Functions

Example: Exponential Growth

- A particular bacteria doubles every day.
- If the initial number of bacteria $\left(N_{0}\right)$ is 100.
- After ONE day
- After TWO days
- After THREE days
- After FOUR day
$N=N_{0} \times 2$
$N=N_{0} \times 2 \times 2$
$N=N_{0} \times 2 \times 2 \times 2$

$$
N=N_{0} \times 2 \times 2 \times 2 \times 2
$$

Exponential Functions

Example: Exponential Growth

- A particular bacteria doubles every day.
- If the initial number of bacteria $\left(N_{0}\right)$ is 100 .
- After ONE day $\quad \mathrm{N}=\mathrm{N}_{0} \times 2^{1}$
- After TWO days $N=N_{0} \times 2^{2}$
- After THREE days $\mathrm{N}=\mathrm{N}_{0} \times 2^{3}$
- After FOUR days
$N=N_{0} \times 2^{4}$
- For n number of days $N=N_{0} \times 2^{n}$

Exponential Functions

Example: Exponential Growth

- A particular bacteria doubles every day.
- If the initial number of bacteria $\left(N_{0}\right)$ is 100 .
- For n number of days $\quad N=N_{0} \times 2^{n}$

After 360 days $x=360$
Number of bacteria,
$N=N_{0} \times 2^{x}$
$N=100 \times 2^{360}$,
$N=100 \times 2.3 \times 10^{108}$
$N=2.3 \times 10^{110}$
$N=2.3 \times 10{ }^{110}$
$2.3 \times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$ $\times 10 \times 10$

$N=2.3 \times 10^{110}$

$23,000,000,000,000,000,000,000,000,000$,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000

Exponential Functions

Example: Exponential Decay

- Decay of a radionuclide.
- If the initial number of atoms of the nuclide is N_{0}
- After ONE half-life $N=N_{0} / 2$
- After TWO half-lives $N=N_{0} / 4$
- After THREE half-lives $N=N_{0} / 8$
- And so on...
- How many are there after 8 half-lives?
- How many are there after 1000 half-lives?
- -> Mathematical function

Exponential Functions

Example: Exponential Decay

- Decay of a radionuclide.
- If the initial number of atoms of the nuclide is N_{0}
- After ONE half-life $\quad N=N_{0} / 2$
- After TWO half-lives $\quad N=N_{0} / 4$
- After THREE half-lives $N=N_{0} / 8$
- After FOUR half-lives $\quad N=N_{0} / 16$

Exponential Functions

Example: Exponential Decay

- Decay of a radionuclide.
- If the initial number of atoms of the nuclide is N_{0}
- After ONE half-life
- After TWO half-lives
- After THREE half-lives
- After FOUR half-lives
- For n number of days
$N=N_{o} \times 2^{-n}$

Exponential Functions

Definition of an Exponential Relationship
"A quantity y is said to vary exponentially with x if equal changes in x produce equal fractional changes in $y^{\prime \prime}$
I.e. fractional change in y is proportional to change in x

Exponential Functions

- The increase/decrease in y is often written as $d y$
- Therefore the fractional changes in y is $d y / y$
- Constant of proportionality, k
- Otherwise known as growth/decay constant

$$
\begin{array}{c|c}
\frac{d y}{y}=k \times d x \\
y=y_{0} \times e^{k x}
\end{array} \left\lvert\, \begin{aligned}
& \frac{d y}{y}=\frac{1}{k d x} \\
& y=y_{0} \times e^{-k x}
\end{aligned}\right.
$$

Exponential Functions

Relationship between decay constant \& half value

$$
\begin{aligned}
y & =y_{0} \times e^{-k x} \\
\frac{y}{y_{0}} & =e^{-k x} \\
\frac{1}{2} & =e^{-k x_{1 / 2}} \\
\ln \left(\frac{1}{2}\right) & =-k x_{1 / 2} \\
x_{1 / 2} & =-\ln \left(\frac{1}{2}\right) / k \\
k & =\ln (2) / x_{1 / 2}
\end{aligned}
$$

Exponential Functions

Example: Radioactive decay

$$
\begin{aligned}
& A=A_{0} \times 2^{-n} \\
& A=A_{0} \times e^{-\Lambda t}
\end{aligned}
$$

Trigonometric Functions

- Definition of sine function.
- The unit circle is the circle with its centre at the origin and a radius of 1 .
- Angle x is formed by rotating OA about the origin to OP Then the y-coordinate of point P is $\sin (x)$.

- Function: $y=\sin (x)$

Trigonometric Functions

- Definition of tangent function.
- The unit circle is the circle with its centre at the origin and a radius of 1 .
- Angle x is formed by rotating OA about the origin to OP Point Q is the intersection of line $O P$ and $x=1$.
- Then the y-coordinate of point Q is $\tan x$.
- Function: $y=\tan (x)$

Trigonometric Functions

- Sine

$$
y=\sin (x) \text { or } f(x)=\sin (x)
$$

- Cosine

$$
y=\cos (x) \text { or } f(x)=\cos (x)
$$

- Tangent

$$
y=\tan (x) \text { or } f(x)=\tan (x)
$$

Trigonometric Functions

- Definition of cosine function.
- The unit circle is the circle with its center at the origin and a radius of 1 .
- Angle x is formed by rotating $O A$ about the origin to $O P$. Then the x-coordinate of point P is $\overline{\cos (x) .}$

Example Questions

1. Show that the decay constant is $\lambda=\ln (2) / T_{1 / 2}$
2. The half-life of lodine 131 is eight days. Calculate the decay constant in (a) days ${ }^{-1}$, (b) seconds ${ }^{-1}$
3. The initial activity of a radionuclide is 1 MBq . What is it's half-life if after 24 hours the activity has dropped to $1,100 \mathrm{~Bq}$?
4. Without the use of a calculator, calculate
a. $\log _{9}(81)$
b. $\log _{7}(49)$
c. $\ln \left(e^{12}\right)$
