Mathematical Skills:
Functions

What is a Function?

* A mathematical function is a process that
converts one set of nhumbers into another.

* For example: Doubling
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What is a Function?

* A mathematical function is a process that
converts one set of numbers into another.

* For example: Doubling
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The Function Machine
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Examples

1234567..<|:Q
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y=x?

Function Notation

* Variables
— Dependent Variable (y)
— Independent Variable (x)

* Constants

y=x+2
f(x)=x+2
y=x+z

f(x,2)=x+2z

Examples of Functions

* Circumference of a circle:
— Circumference = 2 X m X radius
—f(r) = 2mr

* Area of a circle:
— Area = 7 X radius?
—f(r) = r2

* Volume of a sphere
— Volume = 4/3 1 X radius3
—f(r)=4/3 nr3

Graphs of functions

* Functions generate pairs of numbers
— These can be used as co-ordinates to draw graphs
— Graphical display of function
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Graphs of functions
* Functions generate pairs of numbers
— These can be used as co-ordinates to draw graphs

— Graphical display of function
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Rates of Change

Rate of cdhange (changeiny)

|__or gradient = | (change in x)
>
p
1]
w
S .
< Change iny
bl
=
3
o
s A
S

Change in x

Input data set (x)




Rates of Change

How do we define the gradient
of a curve?
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Rates of Change

How do we define the gradient
of a curve?

As change in x and y
approach zero, line
becomes tangent

Very small point (x, y)
change in x and
y known as dk
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How do we define the gradient
of a curve?

Gradient at point (x,y) = #
ax
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Rates of Change

How do we define the gradient
of a curve?

Change in x & y between
two points gives an
approximate value (*2.v2)
. {Change i
Using smaller changes erangeny
increases accuracy  (x1.v
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Rates of Change

How do we define the gradient
of a curve?

As change in x and y
approach zero, line

becomes fangent radient of

curve at point
(x,y) is the
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Very small
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Exponentials & Logarithms

the tangent at




Exponentials

* 101=10

* 102=10 X 10 = 100

* 103=10 X 10 X 10 = 1,000

* 10%=10 X 10 X 10 X 10 = 10,000

* 10°=10 X 10 X 10 X 10 X 10 = 100,000

Exponentials

*+ 101=0.1

+ 102=10 + 10 = 0.01

* 10-3=10 + 10 + 10 = 0.001

*+ 104=10 + 10 + 10 + 10 = 0.0001

* 10-5=10 + 10 + 10 + 10 + 10 = 0.00001

Logarithms

* Reverse of an exponential

log,(a™) = x

Logarithms
Examples
Log;o(100) =
Log,(8) =
Logs(9) =

The number e & natural logarithms

*e=271828..

* Natural Log = Log,

* Usually written as /n

The number e & natural logarithms

Euler's number
e is a unique number

The value of the
slope of 7,y=€~ for
any value of xis
equal to the value of

f(X)'




Changing Base

log, (x)

log, (x) = 0. (a)

Changing Bases

Example:

Convert Log;o(x) o base e

log,(x)  In(x)
log,(10) 2.3025

log,,(x) =

Exponential Functions

General Form

ais a constant and called the base
It can be any positive real number

Exponential Functions

Exponential Relationships

* Arise when growth or decay of a substance is
proportional to original amount of substance

* Examples ?

Exponential Functions

Example: Exponential Growth

* A particular bacteria doubles every day.

* If the initial number of bacteria (N,) is 100.
— Affer ONE day there are 200 bacteria (N=200)
— After TWO days there are 400 bacteria (N=400)
— After THREE days there are 800 bacteria (N=800)
— And so on...

* How many bacteria are there after 8 days?
* How many bacteria are there after 1000 days?
* Need to create mathematical function

Exponential Functions

Example: Exponential Growth

* A particular bacteria doubles every day.
* If the initial number of bacteria (N,) is 100.

* After ONE day N
* After TWO days N
* After THREE days N
* After FOUR days N

N, X 2
N, X2 X2
N,X2X2X2
N,X2X2X2X2




Exponential Functions

Example: Exponential Growth

* A particular bacteria doubles every day.
* If the initial number of bacteria (N,) is 100.

* After ONE day N=N, X 2!
* After TWO days N=N, X 2°
* After THREE days N=N, X 2°
* After FOUR days N=N,Xx2*

* For nnumber of days N=N, X 2"

Exponential Functions

Example: Exponential Growth

* A particular bacteria doubles every day.
* If the initial number of bacteria (N,) is 100.

* For n number of days N=N,X2"

After 360 days x = 360
Number of bacteria,

N =N, X 2%

N =100 X 23¢°,

N =100 X 2.3 X 10'%®

N =23 X 10"

N=23X10 10

2.3X10X 10X 10 X 10 X 10X 10 X 10 X 10 X 10 X 10
X10X 10X 10X 10X 10X 10X 10 X 10 X 10 X 10
X10X 10X 10X 10X 10X 10 X 10 X 10 X 10 X 10
X10X 10X 10X 10X 10 X 10 X 10 X 10 X 10 X 10
X10X 10X 10X 10X 10X 10 X 10 X 10 X 10 X 10
X 10X 10 X 10 X 10 X 10 X 10 X 10 X 10 X 10 X 10
X10X 10X 10X 10X 10X 10X 10 X 10 X 10 X 10
X10X 10X 10X 10X 10X 10X 10 X 10 X 10 X 10
X10X 10X 10X 10 X 10 X 10 X 10 X 10 X 10 X 10
X10X 10X 10X 10X 10X 10X 10 X 10 X 10 X 10
X 10X 10 X 10 X 10 X 10 X 10 X 10 X 10 X 10 X 10

N=23 X100

23,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000

Exponential Functions

Example: Exponential Decay

* Decay of a radionuclide.

* If the initial number of atoms of the nuclide is N,
— After ONE half-life N=N,/2
— After TWO half-lives N=N, / 4
— After THREE half-lives N=N, / 8
— And so on...

* How many are there after 8 half-lives?
* How many are there after 1000 half-lives?
* -> Mathematical function

Exponential Functions

Example: Exponential Decay

* Decay of a radionuclide.

* If the initial number of atoms of the nuclide is N,

* After ONE half-life N=N, /2
* After TWO half-lives N=N, /4
* After THREE half-lives N=N, /8
* After FOUR half-lives N=N, /16




Exponential Functions

Example: Exponential Decay

* Decay of a radionuclide.
* If the initial number of atoms of the nuclide is N,

* After ONE half-life N=N,/2

* After TWO half-lives N=N, /4

* After THREE half-lives N=N, /8

* After FOUR half-lives N=N, /16

* For n number of days N=N,X2"

Exponential Functions

Definition of an Exponential Relationship

"A quantity yis said to vary exponentially
with xif equal changes in x produce
equal fractional changes in y"

I.e. fractional change in yis proportional
to change in x

Exponential Functions

* The increase/decrease in y is often written as dy
* Therefore the fractional changes in yis dy/y

* Constant of proportionality, &
— Otherwise known as growth/decay constant

Y _ kxax &1
y kax
y=y,xe” y=yvoxe™

Exponential Functions

Relationship between decay constant & half value

y=Yoxe™
Y .
Ys
%: o
1
In Ej :—kx%
x,, =—In 1 /k
% 2
k =ln(2)/x%

Exponential Functions
Example: Radioactive decay
The half-life of a particular radionuclide is

8 days.
Calculate the decay constant?

Exponential Functions

Example: Radioactive decay
A=A x2"
A=A xe™"




Trigonometric Functions

Trigonometric Functions

* Sine
y=sin(x) or f(x)=sin(x)

* Cosine
y=cos(x) or f(x)=cos(x)

* Tangent
y=tan(x) or f(x)=tan (x)

Trigonometric Functions

* Definition of sine function.

E P
* The unit circle is the circle siff x|
with its centre at the origin
and a radius of 1. :

. Arkqle x is formed by rotating
%‘ abcl)quf the origin to C%P. o 1
en the y-coordinate o
point P is sin (x).

* Function: y = sin (x) y
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Trigonometric Functions

* Definition of cosine function. W
P

* The unit circle is the circle

with its center at the origin

and a radius of 1. £ o
* Angle x is formed by rotating

OAgabou‘r the origin to OP. 1

Then the x-coordinate of

point P is cos (x).

* Function: y = cos (x) y

AWAWIWA
\/\/\/\/\/A\/x

Trigonometric Functions
* Definition of tangent function.

* The unit circle is the circle
with its centre at the origin and e!
a radius of 1.

* Angle x is formed by rotatin
OAg Y 9 1

Q is fan x.

* Function: y = tan (x)

/B W .
A

about the origin to OP.
Point Q is the infersection of
line OP and x=1.
* Then the y-coordinate of point \ OAX 1A
B |

Example Questions

1. Show that the decay constant is A = In(2)/T1.2

2. The half-life of lodine 131 is eight days. Calculate the decay constant in
(a) days™, (b) seconds™.

3. The initial activity of a radionuclide is 1MBq. What is it's half-life if after
24 hours the activity has dropped to 1,100Bq?

4. Without the use of a calculator, calculate,
a. loge(81)
b. |Og7g49)
c. Ine?




